Abstract

In this article, a new family of two-stage explicit time integration methods is developed for more effective analyses of linear and nonlinear problems of structural dynamics. The collocation method and special types of difference approximations with adjustable algorithmic parameters are employed to approximate the displacement and velocity vectors in time. The new two-stage explicit method is designed to possess controllable numerical dissipation like many of the recent explicit methods. Interestingly, the period error of the new two-stage explicit method is noticeably decreased when compared with the existing two-stage explicit methods. All improved and preferable features of the new two-stage explicit method are achieved without additional computational costs. Illustrative linear and nonlinear problems are solved numerically by using the new and existing methods, and numerical results are carefully compared to verify the improved performance of the new two-stage explicit method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.