Abstract

This paper is concerned with the formulation and numerical implementation of a new class of time integration schemes applied to linear heat conduction problems. The temperature field at any time level is calculated in terms of the numerical Green’s function matrix of the model problem by considering an analytical time integral equation. After spatial discretization by the finite element method, the Green’s function matrix which transfers solution from t to t + Δt is explicitly computed in nodal coordinates using efficient implicit and explicit Runge-Kutta methods. It is shown that the stability and the accuracy of the proposed method are highly improved when a sub-step procedure is used to calculate recursively the Green’s function matrix at the end of the first time step. As a result, with a suitable choice of the number of sub-steps, large time steps can be used without degenerating the numerical solution. Finally, the effectiveness of the present methodology is demonstrated by analyzing two numerical examples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call