Abstract
In this paper, we present a new family of maximum rank distance (MRD for short) codes in $\mathbb F_{q}^{2n\times 2n}$ of minimum distance $2\leq d\leq 2n$. In particular, when $d=2n$, we can show that the corresponding semifield is exactly a Hughes-Kleinfeld semifield. The middle and right nuclei of these MRD codes are both equal to $\mathbb F_{q^n}$. We also prove that the MRD codes of minimum distance $2<d<2n$ in this family are inequivalent to all known ones. The equivalence between any two members of this new family is also determined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.