Abstract
In this paper, we extend the Beta divergence family to multivariate power spectral densities. Similarly to the scalar case, we show that it smoothly connects the multivariate Kullback-Leibler divergence with the multivariate Itakura-Saito distance. We successively study a spectrum approximation problem, based on the Beta divergence family, which is related to a multivariate extension of the THREE spectral estimation technique. It is then possible to characterize a family of solutions to the problem. An upper bound on the complexity of these solutions will also be provided. Finally, we will show that the most suitable solution of this family depends on the specific features required from the estimation problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.