Abstract

Exploration of rare-earth (RE)-based Kagomé lattice magnets with spin-orbital entangled jeff = 1/2 moments will provide a new platform for investigating the exotic magnetic phases. Here, we report a new family of RE3BWO9 (RE = Pr,Nd,Gd-Ho) boratotungstates with magnetic RE3+ ions arranged on Kagomé lattice and perform its structure and magnetic characterizations. These serial compounds crystallize in a hexagonal coordinated structure with space group P63 (no. 173), where magnetic RE3+ ions have distorted Kagomé lattice connections within the ab plane and stacked in an AB-type fashion along the c axis. The interlayer RE-RE separation is comparable with that of the intralayer distance, forming 3-dimensional (3D) exchange coupled magnetic framework of RE3+ ions. The magnetic susceptibility data of RE3BWO9 (RE = Pr, Nd, Gd-Ho) reveal dominant antiferromagnetic interactions between magnetic RE3+ ions, but without visible magnetic ordering down to 2 K. The magnetization analyses for different RE3+ ions show diverse anisotropic behaviors, making RE3BWO9 as an appealing Kagomé-lattice antiferromagnet to explore exotic magnetic phases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.