Abstract
An alkaliphilic bacterium, strain AHO 1, was isolated from an enrichment culture with hydrogen at pH 10 inoculated with a composite sample of sediments from five highly alkaline soda lakes (Kenya). This bacterium is a gram-negative, nonmotile, rod-shaped, obligately aerobic, and facultatively autotrophic hydrogen-oxidizing organism. It was able to oxidize reduced sulfur compounds to sulfate during heterotrophic growth. It utilized a wide range of organic compounds as carbon and energy sources and grew mixotrophically with hydrogen and acetate. With sulfur compounds, mixotrophic growth was observed only in acetate-limited continuous culture. The normal pH range for autotrophic growth with hydrogen was pH 8.0-10.25, with a pH optimum at 9-9.5. Growth at pH values lower than 8.0 was extremely slow. Heterotrophic growth with acetate was optimal at pH 10.0. The hydrogen-oxidizing activity of whole cells was maximal at pH 9.0 and still substantial up to pH 11. NAD-dependent hydrogenase activity was found in the soluble fraction of the cell-free extract, but no methylene blue-dependent activity in either the soluble or membrane fractions was observed. On the basis of its pH profile, the soluble hydrogenase of strain AHO 1 was a typical pH-neutral enzyme. Phylogenetic analysis revealed that strain AHO 1 belongs to the alpha-3 subgroup of the Proteobacteria with a closest relation to a recently described alkaliphilic aerobic bacteriochlorophyll a-containing bacterium "Roseinatronobacter thiooxidans."
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.