Abstract

In this article, we investigate the utilization of Riemann–Liouville’s fractional integral and the Caputo derivative in the application of the Optimal Auxiliary Function Method (OAFM). The extended OAFM is employed to analyze fractional non-linear coupled ITO systems and non-linear KDV systems, which feature equations of a fractional order in time. We compare the results obtained for the ITO system with those derived from the Homotopy Perturbation Method (HPM) and the New Iterative Method (NIM), and for the KDV system with the Laplace Adomian Decomposition Method (LADM). OAFM demonstrates remarkable convergence with a single iteration, rendering it highly effective. In contrast to other existing analytical approaches, OAFM emerges as a dependable and efficient methodology, delivering high-precision solutions for intricate problems while saving both computational resources and time. Our results indicate superior accuracy with OAFM in comparison to HPM, NIM, and LADM. Additionally, we enhance the accuracy of OAFM through the introduction of supplementary auxiliary functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.