Abstract
We consider an extension of the Ho\v{r}ava-Lifshitz gravity with extra conformal symmetry by introducing a scalar field with higher order curvature terms. Relaxing the exact local Weyl symmetry, we construct an action with three free parameters which breaks local anisotropic Weyl symmetry but still preserves residual global Weyl symmetry. At low energies, it reduces to a Lorentz-violating scalar-tensor gravity. With a constant scalar field background and particular choices of the parameters, it reduces to the Ho\v{r}ava-Lifshitz (HL) gravity, but any perturbation from these particular configurations produces some non-trivial extensions of HL gravity. The perturbation analysis of the new extended HL gravity in the Minkowski background shows thatthe pathological behaviors of scalar graviton, i.e., ghost or instability problem, and strong coupling problem do not emerge up to cubic order as well as quadratic order.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.