Abstract

Many physical, chemical, and biological processes happen in liquid-vapor interface and are profoundly influenced with the local microstructures. In contrast to the liquid bulk, molecular orientation is the remarkable one of asymmetric structural features of the interface. Here we report an experimental method, namely, electron-impact time-delayed mass spectrometry and give a brief review about our recent progresses. This brand-new method not only enables us to have more insights into the interfacial structures, as done with small-angle X-ray and neutron scatterings and vibrational sum frequency generation spectroscopy, but also provides opportunity to explore the electron-driven chemical reactions therein.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call