Abstract

This paper derives a general sufficient condition for existence and uniqueness in continuous games using a variant of the contraction mapping theorem applied to mappings from a subset of the real line on to itself. We first prove this contraction mapping variant, and then show how the existence of a unique equilibrium in the general game can be shown by proving the existence of a unique equilibrium in an iterative sequence of games involving such mappings. Finally, we show how a general condition for this to occur is that a matrix derived from the Jacobian matrix of best-response functions has positive leading principal minors, and how this condition generalises some existing uniqueness theorems for particular games. In particular, we show how the same conditions used in those theorems to show uniqueness, also guarantee existence in games with unbounded strategy spaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.