Abstract
This paper considers a general Burgers’ equation with the nonlinear term coefficient being an arbitrary constant. Two identical solutions of the general Burgers’ equation are separately derived by a direct integration method and the simplest equation method with the Bernoulli equation being the simplest equation. The proposed exact solutions overcome the long existing problem of discontinuity and can be successfully reduced to linearity, while the nonlinear term coefficient approaches zero. In addition, a general Cole-Hopf transform is introduced. Finally, the proposed derived solution is compared with the perturbation solution and other existing exact solutions. A new phenomenon, which we named “kink sliding,” is observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.