Abstract
Ocular toxoplasmosis is the most prevalent clinical manifestation of T. gondii infection, which causes irreversible retinal damage. Different experimental models have been developed to study this pathology. In the present study, a new, ex vivo model is proposed to contribute to the elucidation of disease mechanisms and to possible therapeutic solutions. Ex-vivo retinal explants, prepared from mouse retinas following established protocols, were incubated with T. gondii tachyzoites maintained in Vero cells. At different times, starting at 12 h up to 10 days of incubation, the explants were analyzed with immunofluorescence and Western blot to investigate their responses to parasite infection. T. gondii invasion of the retinal thickness was evident after 3 days in culture, where parasites could be detected around retinal cell nuclei. This was paralleled by putative cyst formation and microglial activation. At the same time, an evident increase in inflammatory and oxidative stress markers was detected in infected explants compared to controls. Cell death also appeared to occur in retinal explants after 3 days of T. gondii infection, and it was characterized by increased necroptotic but not apoptotic markers. The proposed model recapitulates the main characteristics of T. gondii retinal infection within 3 days of incubation and, therefore, allows for studying the very early events of the process. In addition, it requires only a limited number of animals and offers easy manipulation and accessibility for setting up different experimental conditions and assessing the effects of putative drugs for therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.