Abstract
Brain computer interface systems decode brain activities from electroencephalogram (EEG) signals and translate the user's intentions into commands to control and/or communicate with augmentative or assistive devices without activating any muscle or peripheral nerve. In this paper, we aimed to improve the accuracy of these systems using improved EEG signal processing techniques through a novel evolutionary approach (fusion-based preprocessing method). This approach was inspired by chromosomal crossover, which is the transfer of genetic material between homologous chromosomes. In this study, the proposed fusion-based preprocessing method was applied to an open access dataset collected from 29 subjects. Then, features were extracted by the autoregressive model and classified by k-nearest neighbor classifier. We achieved classification accuracy (CA) ranging from 67.57 to 99.70% for the detection of binary mental arithmetic (MA) based EEG signals. In addition to obtaining an average CA of 88.71%, 93.10% of the subjects showed performance improvement using the fusion-based preprocessing method. Furthermore, we compared the proposed study with the common average reference (CAR) method and without applying any preprocessing method. The achieved results showed that the proposed method provided 3.91% and 2.75% better CA then the CAR and without applying any preprocessing method, respectively. The results also prove that the proposed evolutionary preprocessing approach has great potential to classify the EEG signals recorded during MA task.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.