Abstract

Finding the degree-constrained minimum spanning tree (d-MST) of a graph is a well-studied NP-hard problem of importance in communications network design and other network-related problems. In this paper we describe some previously proposed algorithms for solving the problem, and then introduce a novel tree construction algorithm called the randomized primal method (RPM) which builds degree-constrained trees of low cost from solution vectors taken as input. RPM is applied in three stochastic iterative search methods: simulated annealing, multistart hillclimbing, and a genetic algorithm. While other researchers have mainly concentrated on finding spanning trees in Euclidean graphs, we consider the more general case of random graph problems. We describe two random graph generators which produce particularly challenging d-MST problems. On these and other problems we find that the genetic algorithm employing RPM outperforms simulated annealing and multistart hillclimbing. Our experimental results provide strong evidence that the genetic algorithm employing RPM finds significantly lower-cost solutions to random graph d-MST problems than rival methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.