Abstract

Low-cost optical dust sensors are widely used in air purifiers, air conditioners, and air-quality monitoring networks. However, the quality and reliability of these sensors have always been disputed because a standard calibration method has not been established. Low-cost dust sensors used by researchers are calibrated using the researchers’ own methods by applying, for example, a co-location test with reference instruments, a chamber test, or a low-speed duct test. In this study, a test method for the performance evaluation of low-cost sensors was developed using KCl particles with an exponentially decaying particle concentration. With this method, the testing time can be significantly reduced to less than 10 min, and the response characteristics of the sensors to rapidly changing concentrations can be determined. AirAssure from TSI Inc., AirBeam2 from HabitatMap LLC, and DC1100 from Dylos were tested accordingly. The linearities of the measured particulate matter concentrations were significantly good (R2 > 0.95), except for the AirAssure sensors. It was also found that the response characteristics of the sensors depended on the particle concentration decay times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.