Abstract

ABSTRACTWhen a sufficient correlation between the study variable and the auxiliary variable exists, the ranks of the auxiliary variable are also correlated with the study variable, and thus, these ranks can be used as an effective tool in increasing the precision of an estimator. In this paper, we propose a new improved estimator of the finite population mean that incorporates the supplementary information in forms of: (i) the auxiliary variable and (ii) ranks of the auxiliary variable. Mathematical expressions for the bias and the mean-squared error of the proposed estimator are derived under the first order of approximation. The theoretical and empirical studies reveal that the proposed estimator always performs better than the usual mean, ratio, product, exponential-ratio and -product, classical regression estimators, and Rao (1991), Singh et al. (2009), Shabbir and Gupta (2010), Grover and Kaur (2011, 2014) estimators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.