Abstract

We investigate how aftershocks are spatially distributed relative to the mainshock. Compared to previous studies, ours focuses on earthquakes causally related to the mainshock rather than on aftershocks of previous aftershocks. We show that this distinction can be made objectively but becomes uncertain at long time scales and large distances. Analyzing a regional earthquake data set, it is found that, at time t following a mainshock of magnitude m, the probability of finding an aftershock at distance r relative to the mainshock fault decays as r−γ, where γ is typically between 1.7 and 2.1 for 3 ≤ m < 6 and is independent of m, for r less than 10 to 20 km and t less than 1 day. Uncertainties on this probability at larger r and t do not allow for a correct estimation of this spatial decay. We further show that a static stress model coupled with a rate‐and‐state friction model predicts a similar decay, with an exponent γ = 2.2, in the same space and time intervals. This suggests that static stress changes could explain the repartition of aftershocks around the mainshock even at distances larger than 10 times the rupture length.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.