Abstract

The gene responsible for cystic fibrosis (CF) was discovered 25 years ago. This breakthrough has enabled a sophisticated understanding of how various mutations lead to specific alterations in the structure and function of the CF transmembrane regulator (CFTR) protein. Until recently, all therapies in CF were focused on ameliorating the downstream consequences of CFTR dysfunction. High-throughput drug screening approaches have yielded compounds that can modify CFTR structure and function, thus targeting the basic defect in CF. The present article describes the CFTR mutational classes, reviews mutation-specific therapies currently in late-phase clinical development, and highlights research opportunities and challenges with personalized medicine in CF.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.