Abstract

The entropy power inequality (EPI) provides lower bounds on the differential entropy of the sum of two independent real-valued random variables in terms of the individual entropies. Versions of the EPI for discrete random variables have been obtained for special families of distributions with the differential entropy replaced by the discrete entropy, but no universal inequality is known (beyond trivial ones). More recently, the sumset theory for the entropy function yields a sharp inequality H(X + X') - H(X) ≥ 1/2 - o(l) when X,X' are i.i.d. with high entropy. This paper provides the inequality H(X + X') - H(X) ≥ g(H(X)), where X, X' are arbitrary i.i.d. integer-valued random variables and where g is a universal strictly positive function on R+ satisfying g(0) = 0. Extensions to non identically distributed random variables and to conditional entropies are also obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.