Abstract

Most existing approaches for the data stream classification focus on single-label data in non-stationary environment. In these methods, each instance can only be tagged with one label. However, in many realistic applications, each instance should be tagged with more than one label. To address the challenge of classifying multi-label stream in evolving environment, we propose a novel Multi-Label Dynamic Ensemble (MLDE) approach. The proposed MLDE integrates a number of Multi-Label Cluster-based Classifiers (MLCCs). MLDE includes an adaptive ensemble method and an ensemble voting method with two important weights, subset accuracy weight and similarity weight. Experimental results reveal that MLDE achieves better performance than state-of-the-art multi-label stream classification algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.