Abstract

The most serious concern in the application of air gap membrane distillation (AGMD) configuration is the low permeate flux caused by an additional transport resistance owing to the air gap, by the temperature and concentration polarization and by the surface fouling. This paper presents an innovative design of a low-cost and high efficient membrane module with an advanced enhancement technique in an AGMD configuration, which not only yields a much improved permeate flux but also requires no additional facility for the enhancement. The new module design includes a tangent directional and rotational inlet turbulent flow of hot feed and a partial contact between the membrane and the cooling plate in a small air gap. The concrete structure of the module is introduced in detail in the paper. Using this new module the permeate flux can be obtained up to 119kg/m2h for tap water when the temperature of the hot and cold water is 77°C and 12°C respectively, which is about a 2.5-fold improvement over the traditional AGMD technique at the almost the same conditions. Within the range of our experimental study, the optimum partial contact area ratio is about 75–80%. Mechanistically, the tangent and rotational inlet turbulent flow can accelerate the diffusive process of mass and heat, reduce the boundary layer thickness of temperature and concentration and wash the membrane surface so as to improve the temperature and concentration polarization near the membrane surface and to raise the efficiencies of mass and heat transfer. Because of the partial contact between the membrane and the cooling plate with a large area, the main heat transfer and permeate condensation in the gap both are carried out on the contact area, which is very different from either the common AGMD or DCMD (direct contact membrane distillation) so as to reduce the transport resistance in the gap and thus to raise the permeate flux significantly. The new enhancement technique is also applied for the desalination of 15wt.% salt water, which shows the similar improvement in permeate flux.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call