Abstract

High Performance Computing usually leverages messaging libraries such as MPI orGASNet in order to exchange data among processes in large-scale clusters. Furthermore, these libraries make use of specialized low-level networking layers in order to retrieve as much performance as possible from hardware interconnects such as Infini Band or Myrinet, for example. EXTOLL is another emerging technology targeted for high performance clusters. These specialized low-level networking layers require some kind of flow control in order to prevent buffer overflows at the received side. In this paper we present a new flow control mechanism that is able to adapt the buffering resources used by a process according to the parallel application communication pattern and the varying activity among communicating peers. The tests carried out in a 64-node 1024-core EXTOLL cluster show that our new dynamic flow-control mechanism provides extraordinarily high buffer efficiency along with very low overhead, which is reduced between 8 and 10 times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.