Abstract

In this work, we present a new endstation for the AMOLine of the ASTRID2 synchrotron at Aarhus University, which combines a cluster and nanodroplet beam source with a velocity map imaging and time-of-flight spectrometer for coincidence imaging spectroscopy. Extreme-ultraviolet spectroscopy of free nanoparticles is a powerful tool for studying the photophysics and photochemistry of resonantly excited or ionized nanometer-sized condensed-phase systems. Here, we demonstrate this capability by performing photoelectron-photoion coincidence experiments with pure and doped superfluid helium nanodroplets. Different doping options and beam sources provide a versatile platform to generate various van der Waals clusters as well as He nanodroplets. We present a detailed characterization of the new setup and show examples of its use for measuring high-resolution yield spectra of charged particles, time-of-flight ion mass spectra, anion-cation coincidence spectra, multi-coincidence electron spectra, and angular distributions. A particular focus of the research with this new endstation is on intermolecular charge and energy-transfer processes in heterogeneous nanosystems induced by valence-shell excitation and ionization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.