Abstract

In this article, the novel type of dielectric elastomer made of polydimethylsiloxane, multi-walled carbon nanotubes, and carbon grease is presented. The aim of the study was the development of compliant electrodes with ability for large deformation under applied voltage. The largest deformation of 47% was obtained for electrodes made of 2 wt% of multi-walled carbon nanotubes and 20 wt% of carbon grease. Electrical conductivity achieved for this material was 4.8 S/m. Good dispersion of conductive fillers within silicone matrix was obtained by calendaring technique. It was found that electrical percolation threshold for the compound was below 0.05 wt%. The structure of the material and its mechanical properties were determined. It was described that both properties, electrical conductivity and stiffness of the nanocomposite, have a significant influence on the extent of the electrode deformation. Two actuator designs are presented as the examples of application of developed material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call