Abstract
In this article, the novel type of dielectric elastomer made of polydimethylsiloxane, multi-walled carbon nanotubes, and carbon grease is presented. The aim of the study was the development of compliant electrodes with ability for large deformation under applied voltage. The largest deformation of 47% was obtained for electrodes made of 2 wt% of multi-walled carbon nanotubes and 20 wt% of carbon grease. Electrical conductivity achieved for this material was 4.8 S/m. Good dispersion of conductive fillers within silicone matrix was obtained by calendaring technique. It was found that electrical percolation threshold for the compound was below 0.05 wt%. The structure of the material and its mechanical properties were determined. It was described that both properties, electrical conductivity and stiffness of the nanocomposite, have a significant influence on the extent of the electrode deformation. Two actuator designs are presented as the examples of application of developed material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Intelligent Material Systems and Structures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.