Abstract

The paper deals with a numerical technique for solving nonlinear singular boundary value problems arising in various physical models. First, we convert the original problem to an equivalent integral equation to surmount the singularity and employ afterward the boundary condition to compute the undetermined coefficient. Finally, the integral equation without undetermined coefficient is treated using homotopy perturbation method. The present method is implemented on three physical model examples: i) thermal explosions; ii) steady-state oxygen diffusion in a spherical shell; iii) the equilibrium of the isothermal gas sphere. The results obtained by the present method are compared with that obtained using finite-difference method, B-spline method and a numerical technique based on the direct integration method, and comparison reveals that the proposed method with few solution components produces similar results and the method is computationally efficient than others.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.