Abstract

Although meta-heuristic optimization algorithms have been used to solve many optimization problems, they still suffer from two main difficulties: What are the best parameters for a particular problem? How do we escape from the local optima? In this paper, a new, efficient meta-heuristic optimization algorithm inspired by wild dog packs is proposed. The main idea involves using three self-competitive parameters that are similar to the smell strength. The parameters are used to control the movement of the alpha dogs and, consequently, the movement of the whole pack. The rest of the pack is used to explore the neighboring area of the alpha dog, while the hoo procedure is used to escape from the local optima. The suggested method is applied to several unimodal and multimodal benchmark problems and is compared to five modern meta-heuristic algorithms. The experimental results show that the new algorithm outperforms other peer algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.