Abstract
A new four-step implicit linear sixth algebraic order method with vanished phase-lag and its first derivative is constructed in this paper. The purpose of this paper is to develop an efficient algorithm for the approximate solution of the one-dimensional radial Schr¨odinger equation and related problems. In order to produce an efficient multistep method the phase-lag property and its derivatives are used. An error analysis and a stability analysis is also investigated and a comparison with other methods is also studied. The efficiency of the new methodology is proved via theoretical analysis and numerical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Modern Methods in Numerical Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.