Abstract

Output voltage regulation of DC–DC converters has recently gained an increasing attention to face the many system nonidealities. The fast switching behavior is nonlinear time varying, the presence of model and measurement uncertainties, and large variations, are all inherited challenges. The aim of the present work is to design a robust nonlinear controller that ensures satisfactory and robust output voltage regulation for a proton-exchange membrane fuel cell (PEMFC) based on a DC–DC Interleaved Boost Converter (IBC). A state-space model of the DC–DC IBC is first derived using the state-space averaging technique, and a mathematical model is constructed for the PEFMC. In this regard, a robust nonlinear controller and a proportional integral controller are proposed. The controllers are tuned though particle swarm optimization algorithm to estimate their good parameters assuring the desired performance is met. The integral of absolute error criterion is used to improve the dynamic performance of the overall controlled system. Furthermore, the closed-loop stability is analyzed using the Lyapunov stability theorem, and the effectiveness of the closed-loop system is validated under various operating conditions of the PEMFC and load perturbations. Compared to other methods, the obtained results demonstrate a superior performance of the proposed control strategy in terms of its robustness to variations and uncertainties, smooth tracking of a varying set-point and faster transients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call