Abstract

After a series of publications of T.E. O'Neil et al. (e.g. in 2010), dynamic programming seems to be the most promising way to solve knapsack problems. Some techniques are known to make dynamic programming algorithms (DPA) faster. One of them is the graphical method that deals with piecewise linear Bellman functions. For some problems, it was previously shown that the graphical algorithm has a smaller running time in comparison with the classical DPA and also some other advantages. In this paper, an exact graphical algorithm (GrA) and a fully polynomial-time approximation scheme based on it are presented for an investment optimization problem having the best known running time. The algorithms are based on new Bellman functional equations and a new way of implementing the GrA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.