Abstract

Eager replication of distributed databases over a decentralized Peer-to-Peer (P2P) network is often likely to generate unreliability because participants can be or cannot be available. Moreover, the conflict between transactions initiated by different peers to modify the same data is probable. These problems are responsible of perpetual transaction abortion. Thus, a new Four-Phase-Commit (4PC) protocol that allows transaction commitment with available peers and recovering unavailable peers when they become available again has been designed using the nested transactions and the distributed voting technique. After implementing the new algorithm with C#, experiments made it possible to analyse the performance which revealed that the new algorithm is efficient because in one second it can replicate a considerable number of records, such as when an important volume of data can be queued for subsequent recovery of the concerned slave peers when they become available again.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.