Abstract

Cultured skin has been used extensively for testing therapeutic drugs because it replicates the physical and biochemical properties of whole skin. However, traditional static culture cannot fully maintain cell viability and skin morphology because of the limitations involved with nutrient transmission. Here, we develop a new dynamic perfusion platform for skin culture and compare it with a static culture device. Rat skins were cultured in either static or dynamic condition for 0, 3, 6, 9 and 12 days. H&E, periodic acid-Schiff (PAS) and picrosirius red (PSR) staining were used for skin morphology detection, immunostaining against cytokeratin 10 (CK10) for differentiation detection, immunostaining against proliferating cell nuclear antigen (PCNA) for cell proliferation detection and TUNEL staining for apoptosis detection. After culturing for 12days, the epidermis, basement membrane, hair follicles and connective tissue were disrupted in the static group, whereas these features were preserved in the dynamic group. Moreover, compared to the static group, proliferation in the epidermis and hair follicles was significantly improved and apoptosis in dermis was significantly decreased in the dynamic group. These findings suggest that our device is effective for extending the culture period of rat skin to maintain its characteristics and viability in vitro.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.