Abstract

Metal-organic frameworks (MOFs) are a unique class of multifunctional hybrid crystals that have been successfully utilized in diverse ranges of applications. However, since MOFs are prone to aqueous degradation, the development of stable luminescent MOF platforms in aqueous media is still a huge challenge. Here, a novel dual-ligand Eu3+/DUT-52-COOH composite is prepared based on the luminescent DUT-52 prototype structure via a dual-ligand strategy and a post-synthetic modification (PSM) method. The functionalized Eu3+/DUT-52-COOH material exhibits dual emission and good photothermal stability in aqueous media. Thus, Eu3+/DUT-52-COOH is developed as a ratiometric luminescent sensor to achieve highly selective and sensitive detection of Cu2+ and Cr2O72- in aqueous solutions and has a low detection limit of 3.43 μM and 25.7 nM, respectively. This work is one of the few cases of detecting Cu2+ and Cr2O72- in aqueous media based on a DUT-52, and the detection signals can be observed by the bare eye without using sophisticated analytical instruments. The possible sensing mechanism is discussed in detail. The results obtained in this project may provide broad prospects for developing smart sensing systems to accomplish highly efficient, easily operable and quantitative intelligent recognition of Cu2+ and Cr2O72-.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call