Abstract

Recently, phase change materials are emerging in thermal drying technology. This study offers a new approach in thermal drying of a moist paper sheet deploying solid-solid phase change material, tentatively as an alternative to solid-liquid micro-encapsulated PCMs uniformly dispersed inside the void part of porous sheet. In contrast to SL-MEPCM scenario, SS-PCM is fabricated in solid matrix of porous medium, remaining the sheet porosity intact. Additionally, comparing to its SL-MEPCM counterpart, any costly PCM encapsulation process or change in the design of headbox of commercial paper machine is avoided. As well, volume change during phase transition is negligible. This configuration is particularly ideal for drying applications where a low porosity, initially highly moist sheet is to be dried. A numerical experiment is carried out to investigate the dewatering behavior of SS-PCM fabricated paper in a drying process. A real shape-stabilized polymeric SS-PCM is used in this study. A pattern search optimization technique is employed to minimize the target moisture content. This study shows SS-PCM primarily becomes effective in last stage of drying where it internally releases the heat gained in previous stages. The numerical results indicate the moisture removal is enhanced by approximately 29% utilizing SS-PCM. The effect of SS-PCM volume percentage and particularly infrared emitters are studied, as well. It is observed that SS-PCM equipped paper does not perform effectively in drying sectors where IR emitters are retrofitted. Eventually, a comparative study is performed to fairly compare the thermal performance of SL-MEPCM and SS-PCM in paper drying.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.