Abstract

Calcium/calmodulin-dependent protein kinases (CaM kinases) have been reported to be involved in neuroplasticity. We have cloned a new Drosophila CaM kinase gene named caki. We describe the molecular characterization of caki and a behavioral effect of its elimination. The caki gene is extremely large; comparison of the genomic and cDNA sequences reveals that the caki transcription unit is at least 150 kb. The catalytic domain of this new CaM kinase protein shares homology (41%) with type II CaM kinases, while the C-terminal part is divergent. Constitutively expressed Caki protein is enzymatically active since it causes a 3-fold increase in the level of the Rous sarcoma virus long terminal repeat (RSV LTR) promoter in a co-transfusion assay. In situ hybridization shows that during embryogenesis, larval and pupal life, transcription of caki is restricted almost exclusively to the central nervous system. In the adult head, immunohistochemistry reveals Caki protein in the lamina, the neuropil of the medulla, lobula, lobula plate and in the central brain. Mutant caki flies show reduced walking speed in 'Buridan's paradigm'.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.