Abstract
There are two main factors involved in documents classification, document representation method and classification algorithm. In this study, we focus on document representation method and demonstrate that the choice of representation methods has impacts on quality of classification results. We propose a document representation strategy for supervised text classification named document representation based on global policy (DRGP), which can obtain an appropriate document representation according to the distribution of terms. The main idea of DRGP is to construct the optimization function through the importance of terms to different categories. In the experiments, we investigate the effects of DRGP on the 20 Newsgroups, Reuters21578 datasets, and using the SVM as classifier. The results show that the DRGP outperforms other text representation strategy schemes, such as Document Max, Document Two Max and global policy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.