Abstract

Congenital Adrenal Hyperplasia (CAH) is one of the most widespread severe autosomal recessive hereditary diseases. CAH is caused by the impaired biosynthesis of the key human hormones cortisol and aldosterone and is accompanied by the excess synthesis of androgens. Over 90% of CAH cases are caused by a deficiency of the steroid 21-hydrohylase (P450c21). The degree of damage in this enzyme is responsible for the severity of the clinical manifestation of CAH from potentially lethal to mild symptoms. Various mutations of the gene encoding this enzyme are the main source of the reduced activity of the 21-hydrolase. The location of the highly homological pseudogene CYP21P in close proximity to the functional gene impedes the DNA diagnostics of CAH. To detect the eight most frequent CYP21 gene mutations associated with CAH, we developed a new real-time PCR-based system of DNA diagnostics using new allele-specific primers and TaqMan probes for the analyzed mutations. The method was primarily tested on artificial DNA templates, where the analyzed mutations were introduced by site-directed mutagenesis. Then, it was tested on DNA samples from 43 patients with clinical and biochemical manifestations of CAH; seven patients were used as a control. Two mutant alleles were detected in two different individuals: the nonsense Q318X and the missense V281L mutations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.