Abstract

We decompose the Lie algebra e8(−24) into representations of e7(−25)⊕sl(2,R) using our recent description of e8 in terms of (generalized) 3 × 3 matrices over pairs of division algebras. Freudenthal’s description of both e7 and its minimal representation are therefore realized explicitly within e8, with the action given by the (generalized) matrix commutator in e8, and with a natural parameterization using division algebras. Along the way, we show how to implement standard operations on the Albert algebra such as trace of the Jordan product, the Freudenthal product, and the determinant, all using commutators in e8.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.