Abstract
Conventional methods for solving distribution systems planning (DSP) problem are related to the expansion of distribution systems such as substation reinforcement and feeder replacement. Nowadays, distributed generations (DGs) in various types are a new option for DSP. This paper presents a new approach to solve the DSP problem including DGs with respect to the reliability of the system. The impact of different types of DGs in order to improve the system reliability are modeled and studied by the adequacy transition rate using the Markov model. The objective functions of this optimization problem are power losses, DGs installation and operation cost, reliability indices such as energy not supplied, average interruption frequency, and average interruption duration. Since this optimization problem has a nonlinear complex nature, classical mathematical methods cannot guarantee to achieve the global optimum solution. To solve this problem, a fuzzy interactive multi-objective particle swarm optimization is developed based on Pareto solutions. The model resolves decision variables as follows: location, size, and type of the DG units. The results on IEEE 34-bus distribution system show the effectiveness of the proposed method rather than previous works for reliability assessment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.