Abstract

In this paper we present a new Discrete Particle Swarm Optimization (DPSO) approach to face the NP-hard single machine total weighted tardiness scheduling problem in presence of sequence-dependent setup times. Differently from previous approaches the proposed DPSO uses a discrete model both for particle position and velocity and a coherent sequence metric. We tested the proposed DPSO mainly over a benchmark originally proposed by Cicirello in 2003 and available online. The results obtained show the competitiveness of our DPSO, which is able to outperform the best known results for the benchmark. In addition, we also tested the DPSO on a set of benchmark instances from ORLIB for the single machine total weighted tardiness problem, and we analysed the role of the DPSO swarm intelligence mechanisms as well as the local search intensification phase included in the algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.