Abstract

In order to avoid being bedridden, a preemptive walking rehabilitation is essential for people who lose their walking ability because of illness or accidents. In a previous study, we developed an omnidirectional walking training robot (WTR), the effectiveness of which in rehabilitation was validated by clinical testing. In the primary stage of the walking training, the WTR guides the user to follow the predesigned therapy program to conduct the walking training. This study focuses on the later stages of training in which the user plays an active role of determining the training by himself/herself, and the WTR must follow the user’s intent. However, identifying a user’s intent is challenging. In the present study, we address this problem by introducing a directional-intent identification method based on a distance-type fuzzy reasoning algorithm. The effectiveness of the directional identification method is experimentally confirmed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.