Abstract
In this paper, we use the Lichnerowicz Laplacian to prove new results: the sphere theorem and the integral inequality for Einstein's infinitesimal deformations, which allow us to characterize spherical space forms. Our version of the sphere theorem states that a closed connected Riemannian manifold $(M, g)$ of even dimension $n>3$ is diffeomorphic to a Euclidean sphere or a real projective space if the inequality $Ric_{\rm max}(x) < n K_{\rm min}(x) g$ is true at each point $x\in M$, where $Ric_{\rm max}(x)$ is the maximum of the Ricci curvature, and $K_{\rm min}(x)$ is the minimum of the sectional curvature of $(M, g)$ at $x$. Since this inequality implies positive sectional curvature; therefore, our result partially answers Hopf's old open question.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.