Abstract
A new diagonalization technique for the parallel-in-time solution of linear-quadratic optimal control problems with time-invariant system matrices is introduced. The target problems are often derived from a semi-discretization of a Partial Differential Equation (PDE)-constrained optimization problem. The solution of large-scale time dependent optimal control problems is computationally challenging as the states, controls, and adjoints are coupled to each other throughout the whole time domain. This computational difficulty motivates the use of parallel-in-time methods. For time-periodic problems our diagonalization efficiently transforms the discretized optimality system into nt (=number of time steps) decoupled complex valued 2ny × 2ny systems, where ny is the dimension of the state space. These systems resemble optimality systems corresponding to a steady-state version of the optimal control problem and they can be solved in parallel across the time steps, but are complex valued. For optimal control problems with initial value state equations a direct solution via diagonalization is not possible, but an efficient preconditioner can be constructed from the corresponding time periodic optimal control problem. The preconditioner can be efficiently applied parallel-in-time using the diagonalization technique. The observed number of preconditioned GMRES iterations is small and insensitive to the size of the problem discretization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ESAIM: Control, Optimisation and Calculus of Variations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.