Abstract

We present a new scheme for diabatizing electronic potential energy surfaces for use within the recently implemented direct-dynamics grid-based class of computational nuclear quantum dynamics methods, called Procrustes diabatization. Calculations on the well-studied molecular systems LiF and the butatriene cation, using both Procrustes diabatization and the previously implemented propagation and projection diabatization schemes, have allowed detailed comparisons to be made, which indicate that the new method combines the best features of the older approaches; it generates smooth surfaces, which cross at the correct molecular geometries, reproduces interstate couplings accurately, and hence allows the correct modeling of non-adiabatic dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.