Abstract

In this work, a new resin gel incorporated with layered double hydroxide nanoparticles modified with diethylenetriaminepentaacetic acid is developed for application in diffusive gradients in thin-film devices (abbreviated as LDHs DGT) to monitor eight anions and cations (such as Fe, Mn, Co, Ni, Cu, Cd, Pb, and As) in natural waters and soils. The accumulated anions and cations were quantitatively recovered by one-step elution using 0.5mol·L-1 HNO3 with an optimized elution time of 30min. The performance of the LDHs DGT was independent of solution pH (5-8) and ionic strengths (5-100mmol·L-1). The capacities of the LDHs DGT for Mn(II), Fe(II), Co(II), Ni(II), Cu(II), As(V), Cd(II), and Pb(II) individually are determined to be 202.9, 363.6, 246.9, 88.8, 99.5, 75.3, 159.8, and 671.7μg·cm-2. During the field deployments in anature river, LDHs DGT measured concentrations of cations and anions were almost like those measured by the traditional sampling method (except Fe(II), Cd(II), and Co(II)). In addition, bioavailable Cd measured by LDHs DGT correlated well with Cd in rice grains (R2 = 0.55), indicating that LDHs DGT is a reliable tool for assessing the risk of Cd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call