Abstract
A method is proposed for minimizing the sound radiation of a vibrating beam by patterning the beam with a series of cylindrical dimples such that one or more of the vibration modes have the same shape as the corresponding weak modes. In implementing the proposed approach, the objective is to minimize the shape difference between the vibration mode(s) and the designated weak mode(s) rather than to minimize the radiated sound power at a specific frequency or over a certain bandwidth. The design objective is achieved by calculating the weak modes of the beam using the finite element method and then applying an optimization scheme with the modal assurance criterion (MAC) as the objective function. The optimization results, which cause the vibration mode(s) of the dimpled beam to approach the corresponding weak modes(s), determine the dimple angle and dimple depth. The numerical results show that the radiation efficiency of the optimized dimpled beam using MAC as the objective is generally lower than that of a uniform beam. However, the effectiveness of the proposed design strategy depends on the degree of closeness between the shape of the vibration mode(s) of the dimpled beam and that of the designated weak mode(s).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.