Abstract

In this paper, a structured polynomial parameter-dependent approach is proposed for robust H 2 filtering of linear uncertain systems. Given a stable system with parameter uncertainties residing in a polytope with s vertices, the focus is on designing a robust filter such that the filtering error system is robustly asymptotically stable and has a guaranteed estimation error variance for the entire uncertainty domain. A new polynomial parameter-dependent idea is introduced to solve the robust H 2 filtering problem, which is different from the quadratic framework that entails fixed matrices for the entire uncertainty domain, or the linearly parameter-dependent framework that uses linear convex combinations of s matrices. This idea is realized by carefully selecting the structure of the matrices involved in the products with system matrices. Linear matrix inequality (LMI) conditions are obtained for the existence of admissible filters and based on these, the filter design is cast into a convex optimization problem, which can be readily solved via standard numerical software. Both continuous and discrete-time cases are considered. The merit of the methods presented in this paper lies in their less conservatism than the existing robust filter design methods, as shown both theoretically and through extensive numerical examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.