Abstract

A new design of a two-stage cycloidal speed reducer is presented in this paper. A traditional two-stage cycloidal speed reducer is obtained by the simple combination of single-stage cycloidal speed reducers. A single-stage reducer engages two identical cycloid discs in order to balance dynamical loads and to obtain uniform load distribution. Consequently, the traditional two-stage reducer has four cycloid discs, in total. The newly designed two-stage cycloidal speed reducer, presented in this paper, has one cycloid disc for each stage, that is, two cycloid discs in total, which means that it is rather compact. Due to its specific concept, this reducer is characterized by good load distribution and dynamic balance, and this is described in the paper. Stress state analysis of cycloidal speed reducer elements was also realized, using the finite elements method (FEM), for the most critical cases of conjugate gear action (one, two, or three pairs of teeth in contact). The results showed that cycloid discs are rather uniformly loaded, justifying the design solution presented here. Experimental analysis of the stress state for cycloid discs was realized, using the strain gauges method. It is easy to conclude, based on the obtained results, that even for the most critical case (one pair of teeth in contact) stresses on cycloid discs are in the allowed limits, thus providing normal functioning of the reducer for its anticipated lifetime.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.