Abstract

Vertical Hall sensors (VHSs), compatible with complementary metal oxide semiconductor (CMOS) technology, are used to detect magnetic fields in the plane of the sensor. In previous studies, their performance was limited by a large offset. This paper reports on a novel CMOS seven-contact VHS (7CVHS), which is formed by adding two additional contacts to a traditional five-contact VHS (5CVHS) to alleviate the offset. The offset voltage and offset magnetic field of the 7CVHS are reduced by 90.20% and 88.31% of those of the 5CVHS, respectively, with a 16.16% current-related sensitivity loss. Moreover, the size and positions of the contacts are optimized in standard GLOBALFOUNDRIES 0.18 μm BCDliteTM technology by scanning parameters using FEM simulations. The simulation data are analyzed in groups to study the influence of the size and contact positions on the current-related sensitivity, offset voltage, and offset magnetic field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.