Abstract

This work considers normalized inverse determinant sums as a tool for analyzing the performance of division algebra based space-time codes for multiple antenna wireless systems. A general union bound based code design criterion is obtained as a main result. In our previous work, the behavior of inverse determinant sums was analyzed using point counting techniques for Lie groups; it was shown that the asymptotic growth exponents of these sums correctly describe the diversity-multiplexing gain trade-off of the space-time code for some multiplexing gain ranges. This paper focuses on the constant terms of the inverse determinant sums, which capture the coding gain behavior. Pursuing the Lie group approach, a tighter asymptotic bound is derived, allowing to compute the constant terms for several classes of space-time codes appearing in the literature. The resulting design criterion suggests that the performance of division algebra based codes depends on several fundamental algebraic invariants of the underlying algebra.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.