Abstract

The probability density function (PDF) of the gas density in subsonic and supersonic, isothermal, driven turbulence is analyzed with a systematic set of hydrodynamical grid simulations with resolutions up to 1024^3 cells. We performed a series of numerical experiments with root mean square (r.m.s.) Mach number M ranging from the nearly incompressible, subsonic (M=0.1) to the highly compressible, supersonic (M=15) regime. We study the influence of two extreme cases for the driving mechanism by applying a purely solenoidal (divergence-free) and a purely compressive (curl-free) forcing field to drive the turbulence. We find that our measurements fit the linear relation between the r.m.s. Mach number and the standard deviation of the density distribution in a wide range of Mach numbers, where the proportionality constant depends on the type of the forcing. In addition, we propose a new linear relation between the standard deviation of the density distribution and the standard deviation of the velocity in compressible modes, i.e. the compressible component of the r.m.s. Mach number. In this relation the influence of the forcing is significantly reduced, suggesting a linear relation between the standard deviation of the density distribution and the standard deviation of the velocity in compressible modes, independent of the forcing, ranging from the subsonic to the supersonic regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.